The Secret Lives of Bees

If you have ever felt a yearning for a perfect picture of domestic bliss, take one look inside a simple beehive. The life of the social bee is a life of contentment and diligence, of strict order and unfailing discipline, of stratified classes and organized division of labor, and above all, of a collective mind which puts the survival of the colony above the survival of the individual. Bees are close relatives of wasps and ants, and are found on every continent except Antarctica. They also tend to exhibit some of most sophisticated behaviors in the animal world. In many species of social bees (honeybees being the best known example), hives consist of a reproductive queen, male drones whose only function is to mate with the queen, and several sterile, female worker bees. This week’s Current Biology carries a bunch of interesting studies concerning bees, which bring to light the layers of complexity that underlie the routine behaviors of these remarkable creatures. We are going to take a brief look at each of these studies.

Tricking a bee with a cup of coffee

honey bee photo
Photo by eleZeta

Honeybees feed on nectar, a sweet tasting, sugar-rich substance produced by several species of flowering plants. Nectar carried back to the nests is used to prepare honey, which is stored as food for the young ones, and as surplus rations for the winter. The plants are benefitted by this, as pollen sticking to hairy bristles on the honeybee’s body helps cross-pollinate flowers. The nectar serves as incentive to get the bees to help in this process. So far this seems like a win-win situation for the plant and the bee (a relationship known as ‘mutualism’ in ecology), but nothing in biology is that simple. In light of recent evidence, it now appears that the plants are not as keen as the bees on providing an honest deal, and can trick the bees in a rather ingenious way.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.
Did you like this article? Share it on -
frog

Underwater adhesives, Disappearing frogs and Electric Eels

Hello Folks! As promised, here is part II of our roundup of the most interesting breakthroughs in the world of science in the last couple of weeks. If you missed Part I, you can read it here. You will learn about mysterious brain cells of male roundworms, methods for remote-controlling cancer-fighting immune cells, the latest findings concerning Pluto by the New Horizons spacecraft, and much more.

And now, for the rest.

A glue inspired by nature

<a href="https://pixabay.com/users/Mhy/">Mhy</a> / Pixabay

Making glues that work underwater has long been a challenge for chemical engineers. Since a long time, researchers have been trying to exploit their knowledge of marine mussels to overcome this problem. Mussels stick to rocks in shallow waters using thread-like processes and can withstand battering by heavy waves without losing their grip. They do this by using a family of proteins, called mussel foot proteins (mfps) which they secrete near their points of contact with the rocks. A lot of interest, therefore, lies in uncovering the special properties of mfps that allow them to adhere underwater. Chemically, the main suspects are modified amino acids called catechols, the presence of large numbers of positive and negative charges in the same protein, and non-polar, hydrophobic elements interspersed throughout. Researchers at University of California, Santa Barbara, decided to strip away all the extraneous stuff and design a single small molecule that would incorporate all these components. This they achieved by chemically modifying a zwitterionic (having both positive and negative charges) detergent molecule to include the important catechol group alongside a few other small modifications. When this new material was tested for its stickiness, is was found to be highly adhesive, much stronger than the mfp proteins themselves, and could easily stick underwater forming a thin, uniform layer. According to the scientists, this might have important applications in the field of nanofabrication.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.
Did you like this article? Share it on -

New Horizons, Mysterious male neurons, and Remote-controlled T-cells

Hi everyone! I missed making a post on the last two Sundays, so today I’m bringing you a bunch of interesting discoveries that occurred over the last two weeks. Or rather, I am bringing you half of those stories, because there are simply too many to include in one post. I’ll be posting Part II in a day or two, so stay tuned for that.

Let’s begin!

Pluto Spills its secrets

nh-pluto_crop.jpg
A close-up of Pluto’s surface, taken by New Horizons

The New Horizons spacecraft was launched from Cape Canaveral on January 19, 2006 with a mission to make a close flyby of objects in the Kuiper belt, the dark outer frontier of our solar system. By far, the most interesting target was Pluto, the erstwhile planet, of which we only had data from distant astronomical observations till now. New Horizons took about thirteen months to reach Jupiter and then used Jupiter’s gravity to get a boost in speed before making a beeline for Pluto. On July 14, 2015, it made its closest approach to Pluto, after having transmitted images and data relating to it for a period of almost six months. This month, the results from the flyby were published in the journal Science, exposing a wealth of new information.

For starters, Pluto seems to be unusually geologically active for a planet of its size and status. Its surface is dotted with craters alongside deep features like mountains that can only be formed as a result of tectonic activity and the presence of hard bedrock. The surface of Pluto is covered with nitrogen, carbon monoxide and methane ice, which do not fit the requirement for hard bedrock, and hence this suggests the presence of a harder substance below the surface layer – most likely water-ice. Also, certain parts of Pluto’s surface show really few craters, suggesting that these regions were formed relatively recently – strong evidence for continuing geological activity. Intriguingly, in certain places, the scientists even reported seeing ‘glacier-like’ features.

PIA18179 d-Pluto270-Hubble2003-20100204Pluto-01 Stern 03 Pluto Color TXTAnother surprising discovery was the extent of Pluto’s atmosphere – with an almost 150 Km deep atmospheric ‘haze’ clearly visible above the surface. The surface pressure is low, about 10 microbar (for comparison, atmospheric pressure at the earth’s surface is approximately 1 bar, about 100,000 times that of Pluto). Methane and Nitrogen were among the gases detected. In addition to studying Pluto, New Horizons also took high resolution photos of Pluto’s biggest moon, Charon. Charon also shows evidence of tectonic activities, and has several large craters on its surface. New Horizon also sent back information about two more moons of Pluto – Hydra and Nyx – which are tiny, irregularly shaped satellites, whose highly reflective surfaces indicate that they are mostly covered with water-ice.
Till the New Horizons flyby, the highest resolution image we had of Pluto is the one shown on the top left, taken from the Hubble Space Telescope. Compare it to the latest images released by NASA (top right), if you want to know how much the recent flyby has added to our knowledge of this controversial member of our solar system.

Mysterious male neurons of C. elegans

Caenherrobditis elegans is a small soil-living roundworm (also called a nematode) found in temperate zones. In 1974, the famous South African geneticist Sydney Brenner, proposed the use of C. elegans as a model system for studying development in multicellular organisms.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.
Did you like this article? Share it on -
PublicDomainImages / Pixabay

Nobel Prize, Ancient humans and the Autism debate

Hi everyone! I meant to post this last Sunday, but as you can see, I’ve been running a little behind schedule. Nevertheless, it’s time for a short review of what has been happening in the world of science, and last week has been an interesting week as far as that goes. Let’s start with the big news.

Announcement of the 2015 Nobel Prizes

Earlier last week, the Nobel Assembly at Karolinska Institutet, and the Royal Swedish Academy of Sciences announced the names of the recipients of the 2015 Nobel Prizes in Physiology and Medicine, Physics and Chemistry. Here’re the announcements from the official website

Tu Youyou 1951
Tu Youyou in 1951

The Nobel Prize in Physiology or Medicine 2015 was divided, one half jointly to William C. Campbell and Satoshi Ōmura “for their discoveries concerning a novel therapy against infections caused by roundworm parasites” and the other half to Youyou Tu “for her discoveries concerning a novel therapy against Malaria“.

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald “for the discovery of neutrino oscillations, which shows that neutrinos have mass

The Nobel Prize in Chemistry 2015 was awarded jointly to Tomas Lindahl, Paul Modrich and Aziz Sancar “for mechanistic studies of DNA repair“.

We’ll be exploring each of these awards in more detail in the coming week, along with a brief look at the life and career of each of the eight awardees.

Hands and Feet of ancient humans

homo naledi photo
Photo by GovernmentZA

In late 2013, a pair of explorers entering a cave in the Rising Star system in South Africa stumbled upon a narrow chamber filled with what looked like human bones. It soon became clear that the bones belonged to a human species that no one had ever seen before. Over several weeks of excavation and digging, more than 1500 bone fragments were found, belonging to at least 15 different individuals. The new species was named Homo naledi (a nod to the cave of origin, ‘naledi’ means ‘star’ in the Sotho language). Homo naledi had features both primitive and modern – diminutive in size, small- brained, but with a bone structure eerily similar to modern humans. This week, researchers published their analysis of the hand of Homo naledi, as assessed from bone fragments found in the Rising Star cave.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.
Did you like this article? Share it on -