Freud, Cocaine and the Dopamine Hypothesis of Addiction

Sigmund Freud LIFE
Sigmund Freud
Sigmund Freud, the venerable father of psychoanalysis, had a lesser known distinction up his sleeve. He produced one of the first comprehensive scientific analyses of the drug Cocaine, published in 1884 under the title ‘Über Coca’. In this remarkable manuscript, amidst sections such as a detailed description of the cocaine plant (Erythroxylon coca, for the curious), Freud inserted his meticulous observations on the effects of cocaine on the human body. As he was quite free in admitting, he based his remarks on the “some dozen times” he consumed the ‘coca’ himself, ostensibly for research purposes. Once the effects wore off, Freud reported no lasting side effects, and was quite positive in denying any craving or addiction like symptoms.

It seems to me noteworthy – and I discovered this in myself and in other observers who were capable of judging such things – that a first dose or even repeated doses of coca produce no compulsive desire to use the stimulant further; on the contrary, one feels a certain unmotivated aversion to the substance.

– Sigmund Freud, Über Coca

Till the end of his days, Freud remained convinced about the beneficial nature of cocaine, and strongly advocated its use for medicinal purposes. In an idea that was surprisingly ahead of his time, though ultimately misguided, he even suggested that cocaine be used as a substitution therapy for de-addicting patients from morphine or alcohol.

Freud isn’t alone among illustrious personalities in having dabbled with cocaine, heroin, morphine or any of the other well-known drugs of abuse. Recreational drug use has always been common, particularly among certain social, occupational or age groups, drug prohibition laws notwithstanding. And a really curious fact that is rarely talked about in scientific literature is that many of these users somehow escape without any negative consequences, and never develop the compulsive addiction that makes these drugs so deadly to the population at large.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.

Did you like this article? Share it on -

Demystifying the Brain – the Brains of our Ancestors

Author’s note – This is the second post in a series titled ‘Demystifying the Brain‘. In this series, I will discuss some fundamental neuroscience concepts, and try to explain what scientists have been able to discover so far about how our brains work. You can find previous posts in the series here. If you have any questions, comments or suggestions, do leave a comment below. 

Nothing in biology makes sense except in the light of evolution.
–Theodosius Dobzhansky (1900-1975)

australopithecus lucy photo
Photo by Tim Evanson

Remember last week, when we discussed what the brain is, what it does, and how it goes about doing its job? We learned that the brain is a specialized part of the nervous system – the system which helps control and coordinate our actions. The brain controls the body by sending electrical signals through long bundles of connecting fibers called nerves. The nervous system is also responsible for receiving information from our senses (sight, hearing etc.) and building our worldview using that information. We talked about the energetic costs of maintaining the brain, and why some species may have chosen to maintain a small brain size in exchange for conserving more energy.

Today, however, we are going to take a slightly different approach, and go on a brief tour through the history of our species. And while doing this, we are going to try to answer a basic question – how could a structure as complex as the human brain ever have evolved?

As is the problem with any question of this nature, the answer must come through indirect means. Since we cannot invent a time machine (yet) and open a window into the past to observe evolution in action, our only recourse is to figure out what happened using two lines of evidence. The first set of evidence comes from the fossilized remains of animals, plants or other artifacts that have been preserved naturally; in these, we can look for missing links, or lost stages in evolution. The second method is to look at all the different groups of organisms living today and use their similarities and differences to estimate how far back in evolution they diverged from each other – i.e. when did their last common ancestor live and walk the earth?

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.

Did you like this article? Share it on -

‘Sonogenetics’ – Using sound waves to activate brain cells

Scientists at the Salk Institute, USA have discovered a way to control brain cells using ultrasonic sound waves. Their method, which they call ‘sonogenetics’, has been applied to the tiny worm Caenorhabditis elegans, and can pave the way for advanced research into brain function by letting researchers target individual neurons in the brain.

<a href="https://pixabay.com/users/geralt/">geralt</a> / Pixabay

This is a welcome addition to the burgeoning field of neuroscience research that uses various strategies to specifically target single neurons or neuronal subpopulations in the brain. A whole field of evidence has confirmed that neurons in the brain are surprisingly heterogenous, and even neurons situated next to each other can be performing quite different functions. Teasing out the functions of whole circuits requires specialized techniques for perturbing the activities of small groups of neurons. Being able to activate and inactivate neurons in a controlled manner is of critical importance not only for understanding how the brain works, but also for figuring out what goes wrong in case of neurological diseases like Alzheimer’s disease or bipolar disorder.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.

Did you like this article? Share it on -

Demystifying the brain – What the brain does and does not do

Author’s note – This is the first post in a series of articles titled ‘Demystifying the Brain’. In this series, I will discuss some fundamental neuroscience concepts, and try to explain what scientists have been able to discover so far about how our brains work. I hope you find the series fun and instructive, and look forward to hearing from you in the comments. 

Ask anyone what makes us human, and you will probably receive the answer that it is our brains – our oversized, convoluted, magnificent brains with their 100 billion neurons and 100 trillion connections – that have gifted us our unique position in the animal world. The human brain is considered by many to be the pinnacle of evolutionary design, being a highly efficient, immensely flexible and mind-bogglingly quick computing machine. Unravelling the workings of this machine is a daunting challenge that many bright minds have nevertheless accepted over the years, and we now have a basic, if incomplete, understanding of the basic principles along which the brain functions.

What exactly is the brain?

The brain is, anatomically speaking, a mass of concentrated nervous tissue.

Read more

Graduate student and part-time science blogger. I am currently working on my PhD in neuroscience. In my spare time, I like to indulge my insatiable book addiction, browse the crazy alleys of reddit, and window-shop for gadgets.

Did you like this article? Share it on -